http://blog.csdn.net/canhui_wang/article/details/51730264
摘要
本文主要讲述CUDA的threadIdx。
1. Grid,Block和Thread三者的关系
其中,一个grid包含多个blocks,这些blocks的组织方式可以是一维,二维或者三维。任何一个block包含有多个Threads,这些Threads的组织方式也可以是一维,二维或者三维。举例来讲:比如上图中,任何一个block中有10个Thread,那么,Block(0,0)的第一个Thread的ThreadIdx是0,Block(1,0)的第一个Thread的ThreadIdx是11;Block(2,0)的第一个Thread的ThreadIdx是21,......,依此类推,不难整理出其中的映射公式(表达式已在代码中给出)。
2. GridID,BlockID,ThreadID三者的关系
ThreadID是线性增长的,其目的是用于在硬件和软件上唯一标识每一个线程。CUDA程序中任何一个时刻,每一个线程的ThreadIdx都是特定唯一标识的!grid,block的划分方式不同,比如一维划分,二维划分,或者三维划分。显然,Threads的唯一标识ThreadIdx的表达方式随着grid,block的划分方式(或者说是维度)而不同。下面通过程序给出ThreadIdx的完整的表达式。其中,由于使用的时候会考虑到GPU内存优化等原因,代码可能也会有所不同,但是threadId的计算的表达式是相对固定的。
- /**************************************************************/
- // !!!!!!!!!!!!!!注意!!!!!!!!!!!!!!!!
- /**************************************************************/
- // grid划分成a维,block划分成b维,
- // 等价于
- // blocks是a维的,Threads是b维的。
- // 这里,本人用的是第一中说法。
- /**************************************************************/
- // 情况1:grid划分成1维,block划分为1维。
- __device__ int getGlobalIdx_1D_1D() {
- int threadId = blockIdx.x *blockDim.x + threadIdx.x;
- return threadId;
- }
- // 情况2:grid划分成1维,block划分为2维。
- __device__ int getGlobalIdx_1D_2D() {
- int threadId = blockIdx.x * blockDim.x * blockDim.y
- + threadIdx.y * blockDim.x + threadIdx.x;
- return threadId;
- }
- // 情况3:grid划分成1维,block划分为3维。
- __device__ int getGlobalIdx_1D_3D() {
- int threadId = blockIdx.x * blockDim.x * blockDim.y * blockDim.z
- + threadIdx.z * blockDim.y * blockDim.x
- + threadIdx.y * blockDim.x + threadIdx.x;
- return threadId;
- }
- // 情况4:grid划分成2维,block划分为1维。
- __device__ int getGlobalIdx_2D_1D() {
- int blockId = blockIdx.y * gridDim.x + blockIdx.x;
- int threadId = blockId * blockDim.x + threadIdx.x;
- return threadId;
- }
- // 情况5:grid划分成2维,block划分为2维。
- __device__ int getGlobalIdx_2D_2D() {
- int blockId = blockIdx.x + blockIdx.y * gridDim.x;
- int threadId = blockId * (blockDim.x * blockDim.y)
- + (threadIdx.y * blockDim.x) + threadIdx.x;
- return threadId;
- }
- // 情况6:grid划分成2维,block划分为3维。
- __device__ int getGlobalIdx_2D_3D() {
- int blockId = blockIdx.x + blockIdx.y * gridDim.x;
- int threadId = blockId * (blockDim.x * blockDim.y * blockDim.z)
- + (threadIdx.z * (blockDim.x * blockDim.y))
- + (threadIdx.y * blockDim.x) + threadIdx.x;
- return threadId;
- }
- // 情况7:grid划分成3维,block划分为1维。
- __device__ int getGlobalIdx_3D_1D() {
- int blockId = blockIdx.x + blockIdx.y * gridDim.x
- + gridDim.x * gridDim.y * blockIdx.z;
- int threadId = blockId * blockDim.x + threadIdx.x;
- return threadId;
- }
- // 情况8:grid划分成3维,block划分为2维。
- __device__ int getGlobalIdx_3D_2D() {
- int blockId = blockIdx.x + blockIdx.y * gridDim.x
- + gridDim.x * gridDim.y * blockIdx.z;
- int threadId = blockId * (blockDim.x * blockDim.y)
- + (threadIdx.y * blockDim.x) + threadIdx.x;
- return threadId;
- }
- // 情况9:grid划分成3维,block划分为3维。
- __device__ int getGlobalIdx_3D_3D() {
- int blockId = blockIdx.x + blockIdx.y * gridDim.x
- + gridDim.x * gridDim.y * blockIdx.z;
- int threadId = blockId * (blockDim.x * blockDim.y * blockDim.z)
- + (threadIdx.z * (blockDim.x * blockDim.y))
- + (threadIdx.y * blockDim.x) + threadIdx.x;
- return threadId;
- }
3. GPU Threads与CPU Threads的比较
GPU Threads的生成代价小,是轻量级的线程;CPU Threads的生成代价大,是重量级的线程。CPU Threads虽然生成的代价高于GPU Threads,但其执行效率高于GPU Threads,所以GPU Threads无法在个体的比较上取胜,只有在数量上取胜。在这个意义上来讲,CPU Threads好比是一头强壮的公牛在耕地,GPU Threads好比是1000头弱小的小牛在耕地。因此,为了保证体现GPU并行计算的优点,线程的数目必须足够多,通常至少得用上1000个GPU线程或者更多才够本,才能很好地体现GPU并行计算的优点!
4. GPU Threads的线程同步
线程同步是针对同一个block中的所有线程而言的,因为只有同一个block中的线程才能在有效的机制中共同访问shared memory。要知道,由于每一个Thread的生命周期长度是不相同的,Thread对Shared Memory的操作可能会导致读写的不一致,因此需要线程的同步,从而保证该block中所有线程同时结束。